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Abstract. Due to imperfections of imaging devices (optical degradations,
limited resolution of CCD sensors) and instability of the observed scene (ob-
ject motion, media turbulence), acquired images are often blurred, noisy and
may exhibit insufficient spatial and/or temporal resolution. Such images are
not suitable for object detection and recognition. Reliable detection requires
recovering the original image. If multiple images of the scene are available,
this can be achieved by image fusion.

In this chapter we review the respective methods of image fusion. We
address all three major steps – image registration, blind deconvolution and
resolution enhancement. Image registration brings the acquired images into
spatial alignment, multiframe deconvolution estimates and removes the blur,
and the spatial resolution of the image is increased by so-called superreso-
lution fusion. Superresolution is the main topic of the chapter. We propose a
unifying system that simultaneously estimates blurs and recovers the original
undistorted image, all in high resolution, without any prior knowledge of the
blurs and original image. We accomplish this by formulating the problem as
constrained least squares energy minimization with appropriate regularization
terms, which guarantees a close-to-perfect solution.

We demonstrate the performance of the method on many examples, namely
on car license plate recognition and face recognition. Both of these tasks are
of great importance in security and surveillance systems.

Key words: image fusion, multichannel systems, blind deconvolution, su-
perresolution, regularized energy minimization

1. Introduction

Imaging devices have limited achievable resolution due to many theoretical
and practical restrictions. An original scene with a continuous intensity func-
tion o[x, y] warps at the camera lens because of the scene motion and/or
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change of the camera position. In addition, several external effects blur im-
ages: atmospheric turbulence, camera lens, relative camera-scene motion, etc.
We will call these effects volatile blurs to emphasize their unpredictable and
transitory behavior, yet we will assume that we can model them as convolution
with an unknown point spread function (PSF) v[x, y]. This is a reasonable
assumption if the original scene is flat and perpendicular to the optical axis.
Finally, the CCD discretizes the images and produces a digitized noisy image
g[i, j] (frame). We refer to g[i, j] as a low-resolution (LR) image, since the
spatial resolution is too low to capture all the details of the original scene. In
conclusion, the acquisition model becomes

g[i, j] = D((v ∗ o[W (n1, n2)])[x, y]) + n[i, j] , (1)

where n[i, j] is additive noise and W denotes geometric deformation (spatial
warping) of the image. Geometric deformations are partly caused by the
fact that the image is a 2D projection of a 3D world, and partly by lens
distortions and/or motion of the sensor during the acquisition. D(·) = S(g ∗ ·)
is the decimation operator that models the function of the CCD sensors. It
consists of convolution with the sensor PSF g[i, j] followed by the sampling
operator S, which we define as multiplication by a sum of delta functions
placed on an evenly spaced grid. The above model for one single observation
g[i, j] is extremely ill-posed. Instead of taking a single image we can take K
(K > 1) images of the original scene and, in this way, partially overcome the
equivocation of the problem. Hence we write

gk[i, j] = D((vk ∗ o[Wk(n1, n2)])[x, y]) + nk[i, j] , (2)

where k = 1, . . . , K and D remains the same in all the acquisitions. In the
perspective of this multiframe model, the original scene o[x, y] is a single
input and the acquired LR images gk[i, j] are multiple outputs. The model is
therefore called a single input multiple output (SIMO) formation model. To
our knowledge, this is the most accurate, state-of-the-art model, as it takes all
possible degradations into account.

Because of many unknown parameters of the model, it is hard to analyze
(automatically or visually) the images gk and to detect and recognize objects
in them. A very powerful strategy is offered by image fusion.

The term fusion means in general an approach to extraction of informa-
tion adopted in several domains. The goal of image fusion is to integrate
complementary information from all frames into one new image containing
information the quality of which cannot be achieved otherwise. Here, the
term “better quality” means less blur and geometric distortion, less noise, and
higher spatial resolution. We may expect that object detection and recognition
will be easier and more reliable when performed on the fused image. Re-
gardless of the particular fusion algorithm, it is unrealistic to assume that the
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Figure 1. Image fusion in brief: acquired images (left), registered frames (middle), fused image

(right).

fused image can recover the original scene o[x, y] exactly. A reasonable goal
of the fusion is a discrete version of o[x, y] that has higher spatial resolution
than the resolution of the LR images and that is free of the volatile blurs. In
the sequel, we will refer to this fused image as a high resolution (HR) image
f [i, j].

Fusion of images acquired according to the model (2) is a three-stage
process – it consists of image registration (spatial alignment), which should
compensate for geometric deformations Wk , followed by a multichannel (or
multiframe) blind deconvolution (MBD) and superresolution (SR) fusion. The
goal of MBD is to remove the impact of volatile blurs and the aim of SR is to
increase spatial resolution of the fused image by a user-defined factor. While
image registration is actually a separate procedure, we integrate both MBD
and SR into a single step (see Figure 1), which we call blind superresolution
(BSR). The approach presented in this chapter is one of the first attempts to
solve BSR under realistic assumptions with only little a priori knowledge.

Image registration is a very important step of image fusion, because all
MBD and SR methods require either perfectly aligned channels (which is not
realistic) or allow at most small shift differences. Thus, the role of registra-
tion methods is to suppress large and complex geometric distortions. Image
registration in general is a process of transforming two or more images into a
geometrically equivalent form. From the mathematical point of view, it con-
sists of approximating W −1

k and of resampling the image. For images which
are not blurred, registration has been extensively studied in the recent literature
(see Zitová and Flusser (2003) for a survey). However, blurred images require
special registration techniques. They can be, as well as the general-purpose
registration methods, divided in two groups – global and landmark-based
ones. Regardless of the particular technique, all feature extraction methods,
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similarity measures, and matching algorithms used in the registration process
must be insensitive to image blurring.

Global methods do not search for particular landmarks in the images. They
try to estimate directly the between-channel translation and rotation. In Myles
and Lobo (1998) they proposed an iterative method which works well if a good
initial estimate of the transformation parameters is available. In Zhang et al.
(2000, 2002) the authors proposed to estimate the registration parameters by
bringing the channels into canonical form. Since blur-invariant moments were
used to define the normalization constraints, neither the type nor the level of the
blur influences the parameter estimation. In Kubota et al. (1999) they proposed
a two-stage registration method based on hierarchical matching, where the
amount of blur is considered as another parameter of the search space. In
Zhang and Blum (2001) they proposed an iterative multiscale registration
based on optical flow estimation in each scale, claiming that optical flow
estimation is robust to image blurring. All global methods require considerable
(or even complete) spatial overlap of the channels to yield reliable results,
which is their major drawback.

Landmark-based blur-invariant registration methods have appeared very
recently, just after the first paper on the moment-based blur-invariant features
(Flusser et al., 1996). Originally, these features could only be used for reg-
istration of mutually shifted images (Flusser and Suk 1998; Bentoutou et al.
2002). The proposal of their rotational-invariant version (Flusser and Zitová,
1999) in combination with a robust detector of salient points (Zitová et al.,
1999) led to the registration methods that are able to handle blurred, shifted
and rotated images (Flusser et al., 1999, 2003).

Although the above-cited registration methods are very sophisticated and
can be applied almost to all types of images, the results tend to be rarely
perfect. The registration error usually varies from subpixel values to a few
pixels, so only MBD and SR methods sufficiently robust to between-channel
misregistration can be applied to channel fusion. We will assume in the se-
quel that the LR images are roughly registered and that Wk’s reduce to small
translations.

During the last 20 years, blind deconvolution has attracted considerable
attention as a separate image processing task. Initial blind deconvolution
attempts were based on single-channel formulations, such as in Lagendijk
et al. (1990), Reeves and Mersereau (1992), Chan and Wong (1998), Haindl
(2000). A good overview is in Kundur and Hatzinakos (1996a,b). The prob-
lem is extremely ill-posed in the single-channel framework and cannot be
resolved in the fully blind form. These methods do not exploit the potential
of multiframe imaging, because in the single-channel case the missing in-
formation about the original image in one channel cannot by supplemented
by information obtained from the other channels. Research on intrinsically
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multichannel methods has begun fairly recently; refer to Harikumar and
Bresler (1999), Giannakis and Heath (2000), Pai and Bovik (2001), Panci
et al. (2003), Šroubek and Flusser (2003) for a survey and other references.
Such MBD methods break the limitations of previous techniques and can
recover the blurring functions from the degraded images alone. We further
developed the MBD theory in Šroubek and Flusser (2005) by proposing a
blind deconvolution method for images, which might be mutually shifted by
unknown vectors. A similar idea is used here as a part of the fusion algorithm
to remove volatile blurs and will be explained more in Section 3.

Superresolution has been mentioned in the literature with an increasing
frequency in the last decade. The first SR methods did not involve any deblur-
ring; they just tried to register the LR images with subpixel accuracy and then
to resample them on a high-resolution grid. A good survey of SR techniques
can be found in Park et al. (2003), Farsui et al. (2004). Maximum likelihood
(ML), maximum a posteriori (MAP), the set theoretic approach using POCS
(projection on convex sets), and fast Fourier techniques can all provide a so-
lution to the SR problem. Earlier approaches assumed that subpixel shifts are
estimated by other means. More advanced techniques, such as in Hardie et al.
(1997), Segall et al. (2004), Woods et al. (2006), include shift estimation in
the SR process. Other approaches focus on fast implementation (Farsiu et al.,
2004), space–time SR (Shechtman et al., 2005) or SR of compressed video
(Segall et al., 2004). Some of the recent SR methods consider image blurring
and involve blur removal. Most of them assume only a priori known blurs.
However, few exceptions exist. Authors in Nguyen et al. (2001), Woods et al.
(2003) proposed BSR that can handle parametric PSFs with one parameter.
This restriction is unfortunately very limiting for most real applications. Prob-
ably the first attempts for BSR with an arbitrary PSF appeared in Wirawan
et al. (1999), Yagle (2003), where polyphase decomposition of the images
was employed.

Current multiframe blind deconvolution techniques require no or very
little prior information about the blurs, they are sufficiently robust to noise
and provide satisfying results in most real applications. However, they can
hardly cope with the downsampling operator, which violates the standard
convolution model. On the contrary, state-of-the-art SR techniques achieve
remarkable results in resolution enhancement in the case of no blur. They
accurately estimate the subpixel shift between images but lack any apparatus
for calculating the blurs.

We propose a unifying method that simultaneously estimates the volatile
blurs and HR image without any prior knowledge of the blurs and the original
image. We accomplish this by formulating the problem as a minimization
of a regularized energy function, where the regularization is carried out in
both the image and blur domains. Image regularization is based on variational
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integrals, and a consequent anisotropic diffusion with good edge-preserving
capabilities. A typical example of such regularization is total variation. How-
ever, the main contribution of this work lies in the development of the blur
regularization term. We show that the blurs can be recovered from the LR
images up to small ambiguity. One can consider this as a generalization of
the results proposed for blur estimation in the case of MBD problems. This
fundamental observation enables us to build a simple regularization term for
the blurs even in the case of the SR problem. To tackle the minimization task
we use an alternating minimization approach, consisting of two simple linear
equations.

The rest of the chapter is organized as follows. Section 2 outlines the
degradation model. In Section 3 we present a procedure for volatile blur esti-
mation. This effortlessly blends in a regularization term of the BSR algorithm
as described in Section 4. Finally, Section 5 illustrates applicability of the
proposed method to real situations.

2. Mathematical Model

To simplify the notation, we will assume only images and PSFs with square
supports. An extension to rectangular images is straightforward. Let f [x, y]
be an arbitrary discrete image of size F × F , then f denotes an image column
vector of size F2 × 1 and CA{ f } denotes a matrix that performs convolution
of f with an image of size A × A. The convolution matrix can have a dif-
ferent output size. Adopting the Matlab naming convention, we distinguish
two cases: “full” convolution CA{ f } of size (F + A − 1)2 × A2 and “valid”
convolution Cv

A{ f } of size (F − A + 1)2 × A2. In both cases the convolution
matrix is a Toeplitz-block-Toeplitz (TBT) matrix. In the sequel we will not
specify dimensions of convolution matrices if it is obvious from the size of
the right argument.

Let us assume we have K different LR frames {gk} (each of size G × G)
that represent degraded (blurred and noisy) versions of the original scene.
Our goal is to estimate the HR representation of the original scene, which we
denoted as the HR image f of size F × F . The LR frames are linked with the
HR image through a series of degradations similar to those between o[x, y]
and gk in (2). First f is geometrically warped (Wk), then it is convolved with
a volatile PSF (Vk) and finally it is decimated (D). The formation of the LR
images in vector-matrix notation is then described as

gk = DVkWkf + nk , (3)

where nk is additive noise present in every channel. The decimation ma-
trix D = SU simulates the behavior of digital sensors by first performing
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convolution with the U × U sensor PSF (U) and then downsampling (S). The
Gaussian function is widely accepted as an appropriate sensor PSF and it is
also used here. Its justification is experimentally verified in (Capel, 2004). A
physical interpretation of the sensor blur is that the sensor is of finite size and
it integrates impinging light over its surface. The sensitivity of the sensor is
highest in the middle and decreases towards its borders with Gaussian-like
decay. Further we assume that the subsampling factor (or SR factor, depend-
ing on the point of view), denoted by ε, is the same in both x and y directions.
It is important to underline that ε is a user-defined parameter. In principle,
Wk can be a very complex geometric transform that must be estimated by
image registration or motion detection techniques. We have to keep in mind
that sub-pixel accuracy in gk’s is necessary for SR to work. Standard image
registration techniques can hardly achieve this and they leave a small misalign-
ment behind. Therefore, we will assume that complex geometric transforms
are removed in the preprocessing step and Wk reduces to a small translation.
Hence VkWk = Hk , where Hk performs convolution with the shifted version
of the volatile PSF vk , and the acquisition model becomes

gk = DHkf + nk = SUHkf + nk . (4)

The BSR problem then adopts the following form: We know the LR images
{gk} and we want to estimate the HR image f for the given S and the sensor blur
U. To avoid boundary effects, we assume that each observation gk captures
only a part of f . Hence Hk and U are “valid” convolution matrices Cv

F{hk}
and Cv

F−H+1{u}, respectively. In general, the PSFs hk are of different size.
However, we postulate that they all fit into a H × H support.

In the case of ε = 1, the downsampling S is not present and we face a
slightly modified MBD problem that has been solved elsewhere (Harikumar
and Bresler, 1999, Šroubek and Flusser, 2005). Here we are interested in the
case of ε > 1, when the downsampling occurs. Can we estimate the blurs as
in the case ε = 1? The presence of S prevents us from using the cited results
directly. However, we will show that conclusions obtained for MBD apply
here in a slightly modified form as well.

3. Reconstruction of Volatile Blurs

Estimation of blurs in the MBD case (no downsampling) attracted consider-
able attention in the past. A wide variety of methods were proposed, such as
in Harikumar and Bresler (1999), Giannakis and Heath (2000), that provide
a satisfactory solution. For these methods to work correctly, certain channel
disparity is necessary. The disparity is defined as weak co-primeness of the
channel blurs, which states that the blurs have no common factor except a
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scalar constant. In other words, if the channel blurs can be expressed as a con-
volution of two subkernels then there is no subkernel that is common to all
blurs. An exact definition of weakly co-prime blurs can be found in Giannakis
and Heath (2000). Many practical cases satisfy the channel co-primeness,
since the necessary channel disparity is mostly guaranteed by the nature of
the acquisition scheme and random processes therein. We refer the reader to
Harikumar and Bresler (1999) for a relevant discussion. This channel disparity
is also necessary for the BSR case.

Let us first recall how to estimate blurs in the MBD case and then we will
show how to generalize the results for integer downsampling factors. For the
time being we will omit noise n, until Section 4, where we will address it
appropriately.

3.1. THE MBD CASE

The downsampling matrix S is not present in (4) and only convolution binds
the input with the outputs. The acquisition model is of the SIMO type with one
input channel f and K output channels gk . Under the assumption of channel
co-primeness, we can see that any two correct blurs hi and h j satisfy

‖gi ∗ h j − g j ∗ hi‖2 = 0 . (5)

Considering all possible pairs of blurs, we can arrange the above relation into
one system

N ′h = 0 , (6)

where h = [hT
1 , . . . , hT

K ]T and N ′ consists of matrices that perform convolu-
tion with gk . In most real situations the correct blur size (we have assumed
square size H × H ) is not known in advance and therefore we can generate the
above equation for different blur dimensions Ĥ1 × Ĥ2. The nullity (null-space
dimension) ofN ′ is exactly 1 for the correctly estimated blur size. By applying
SVD (singular value decomposition), we recover precisely the blurs except for
a scalar factor. One can eliminate this magnitude ambiguity by stipulating that∑

x,y hk[x, y] = 1, which is a common brightness preserving assumption. For
the underestimated blur size, the above equation has no solution. If the blur
size is overestimated, then nullity(N ′) = (Ĥ1 − H + 1) (Ĥ2 − H + 1).

3.2. THE BSR CASE

Before we proceed, it is necessary to define precisely the sampling matrix S.
Let Sε

1 denote a 1D sampling matrix, where ε is the integer subsampling factor.
Each row of the sampling matrix is a unit vector whose nonzero element is at
such a position that, if the matrix multiplies an arbitrary vector b, the result



IMAGE FUSION 115

of the product is every εth element of b starting from b1. If the vector length
is M then the size of the sampling matrix is (M/ε) × M . If M is not divisible
by ε, we can pad the vector with an appropriate number of zeros to make it
divisible. A 2D sampling matrix is defined by

Sε := Sε
1 ⊗ Sε

1 , (7)

where ⊗ denotes the matrix direct product (Kronecker product operator).
Note that the transposed matrix (Sε)T behaves as an upsampling operator that
interlaces the original samples with (ε − 1) zeros.

A naive approach, e.g., proposed in Šroubek and Flusser (2006), Chen
et al. (2005), is to modify (6) in the MBD case by applying downsampling
and formulating the problem as

min
h

‖N ′[IK ⊗ SεU]h‖2 , (8)

where IK is the K × K identity matrix. One can easily verify that the condition
in (5) is not satisfied for the BSR case as the presence of downsampling oper-
ators violates the commutative property of convolution. Even more disturbing
is the fact that minimizers of (8) do not have to correspond to the correct blurs.
We are going to show that if one uses a slightly different approach, recon-
struction of the volatile PSFs hk is possible even in the BSR case. However,
we will see that some ambiguity in the solution of hk is inevitable.

First, we need to rearrange the acquisition model (4) and construct from
the LR images gk a convolution matrix G with a predetermined nullity. Then
we take the null space of G and construct a matrix N , which will contain the
correct PSFs hk in its null space.

Let E × E be the size of “nullifying” filters. The meaning of this name will
be clear later. Define G := [G1, . . . , GK ], where Gk := Cv

E{gk} are “valid”
convolution matrices. Assuming no noise, we can express G in terms of f , u
and hk as

G = SεFUH , (9)

where

H := [CεE{h1}(Sε)T , . . . , CεE{hK }(Sε)T ] , (10)

U := CεE+H−1{u} and F := Cv
εE+H+U−2{ f }.

The convolution matrix U has more rows than columns and therefore it is
of full column rank (see proof in Harikumar and Bresler (1999) for general
convolution matrices). We assume that SεF has full column rank as well. This
is almost certainly true for real images if F has at least ε2-times more rows than
columns. Thus Null(G) ≡ Null(H) and the difference between the number of
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columns and rows of H bounds from below the null space dimension, i.e.,

nullity(G) ≥ K E2 − (εE + H − 1)2 . (11)

Setting N := K E2 − (εE + H − 1)2 and N := Null(G), we visualize the null
space as

N =

⎡
⎢⎣

n1,1 . . . n1,N
...

. . .
...

nK ,1 . . . nK ,N

⎤
⎥⎦ , (12)

where nkn is the vector representation of the nullifying filter ηkn of size E × E ,
k = 1, . . . , K and n = 1, . . . , N . Let η̃kn denote upsampled ηkn by factor ε,
i.e., η̃kn := (Sε)T ηkn . Then, we define

N :=

⎡
⎢⎣

CH {η̃1,1} . . . CH {η̃K ,1}
...

. . .
...

CH {η̃1,N } . . . CH {η̃K ,N }

⎤
⎥⎦ (13)

and conclude that

Nh = 0 , (14)

where hT = [h1, . . . , hK ]. We have arrived at an equation that is of the same
form as (6) in the MBD case. Here we have the solution to the blur estimation
problem for the BSR case. However, since Sε is involved, ambiguity of the
solution is higher. Without proofs we provide the following statements. For the
correct blur size, nullity(N ) = ε4. For the underestimated blur size, (14) has
no solution. For the overestimated blur size Ĥ1 × Ĥ2, nullity(N ) = ε2(Ĥ1 −
H + ε) (Ĥ2 − H + ε).

The conclusion may seem to be pessimistic. For example, for ε = 2 the
nullity is at least 16, and for ε = 3 the nullity is already 81. Nevertheless, Sec-
tion 4 will show that N plays an important role in the regularized restoration
algorithm and its ambiguity is not a serious drawback.

It is interesting to note that a similar derivation is possible for rational SR
factors ε = p/q. We downsample the LR images with the factor q, thereby
creating q2 K images, and apply thereon the above procedure for the SR
factor p.

Another consequence of the above derivation is the minimum necessary
number of LR images for the blur reconstruction to work. The condition of the
G nullity in (11) implies that the minimum number is K > ε2. For example,
for ε = 3/2, 3 LR images are sufficient; for ε = 2, we need at least 5 LR
images to perform blur reconstruction.
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4. Blind Superresolution

In order to solve the BSR problem, i.e, determine the HR image f and volatile
PSFs hk , we adopt a classical approach of minimizing a regularized energy
function. This way the method will be less vulnerable to noise and better
posed. The energy consists of three terms and takes the form

E(f, h) =
K∑

k=1

‖DHkf − gk‖2 + αQ(f ) + β R(h) . (15)

The first term measures the fidelity to the data and emanates from our acqui-
sition model (4). The remaining two are regularization terms with positive
weighting constants α and β that attract the minimum of E to an admissible
set of solutions. The form of E very much resembles the energy proposed
in Šroubek and Flusser (2005) for MBD. Indeed, this should not come as a
surprise since MBD and SR are related problems in our formulation.

Regularization Q(f ) is a smoothing term of the form

Q(f ) = fT Lf , (16)

where L is a high-pass filter. A common strategy is to use convolution with
the Laplacian for L, which in the continuous case corresponds to Q( f ) =∫ |∇ f |2. Recently, variational integrals Q( f ) = ∫

φ(|∇ f |) were proposed,
where φ is a strictly convex, nondecreasing function that grows at most lin-
early. Examples of φ(s) are s (total variation),

√
1 + s2 − 1 (hypersurface

minimal function), log(cosh(s)), or nonconvex functions, such as log(1 + s2),
s2/(1 + s2) and arctan(s2) (Mumford-Shah functional). The advantage of the
variational approach is that, while in smooth areas it has the same isotropic
behavior as the Laplacian, it also preserves edges in images. The disadvantage
is that it is highly nonlinear. To overcome this difficulty one must use, e.g.,
the half-quadratic algorithm (Aubert and Kornprobst, 2002). For the purpose
of our discussion it suffices to state that after discretization we arrive again
at (16), where this time L is a positive semidefinite block tridiagonal matrix
constructed of values depending on the gradient of f . The rationale behind
the choice of Q( f ) is to constrain the local spatial behavior of images; it
resembles a Markov Random Field. Some global constraints may be more
desirable but are difficult (often impossible) to define, since we develop a
general method that should work with any class of images.

The PSF regularization term R(h) directly follows from the conclusions
of the previous section. Since the matrix N in (13) contains the correct PSFs
hk in its null space, we define the regularization term as a least-squares fit

R(h) = ‖Nh‖2 = hTN TNh . (17)
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The product N TN is a positive semidefinite matrix. More precisely, R is a
consistency term that binds the different volatile PSFs to prevent them from
moving freely and, unlike the fidelity term (the first term in (15)), it is based
solely on the observed LR images. A good practice is to include with a small
weight a smoothing term hT Lh in R(h). This is especially useful in the case
of less noisy data to overcome the higher nullity of N .

The complete energy then takes the form

E(f, h) =
K∑

k=1

‖DHkf − gk‖2 + αfT Lf + β1‖Nh‖2 + β2hT Lh . (18)

To find a minimizer of the energy function, we perform alternating mini-
mizations (AM) of E over f and h. The advantage of this scheme lies in
its simplicity. Each term of (18) is quadratic and therefore convex (but not
necessarily strictly convex) and the derivatives w.r.t. f and h are easy to cal-
culate. This AM approach is a variation on the steepest-descent algorithm.
The search space is a concatenation of the blur subspace and the image sub-
space. The algorithm first descends in the image subspace and after reaching
the minimum, i.e., ∇f E = 0, it advances in the blur subspace in the direction
∇h E orthogonal to the previous one, and this scheme repeats. In conclusion,
starting with some initial h0 the two iterative steps are:

step 1. fm = arg min
f

E(f, hm)

⇔
(

K∑
k=1

HT
k DT DHk + αL

)
f =

K∑
k=1

HT
k DT gk , (19)

step 2. hm+1 = arg min
h

E(f m, h)

⇔ ([IK ⊗ FT DT DF] + β1N TN + β2L)h = [IK ⊗ FT DT ]g,

(20)

where F := Cv
H { f }, g := [gT

1 , . . . , gT
K ]T and m is the iteration step. Note that

both steps consist of simple linear equations.
Energy E as a function of both variables f and h is not convex due to the

coupling of the variables via convolution in the first term of (18). Therefore,
it is not guaranteed that the BSR algorithm reaches the global minimum.
In our experience, convergence properties improve significantly if we add
feasible regions for the HR image and PSFs specified as lower and upper
bounds constraints. To solve step 1, we use the method of conjugate gradients
(function cgs in Matlab) and then adjust the solution f m to contain values
in the admissible range, typically, the range of values of g. It is common to
assume that PSF is positive (hk ≥ 0) and that it preserves image brightness.
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We can therefore write the lower and upper bounds constraints for PSFs as
hk ∈ 〈0, 1〉H 2

. In order to enforce the bounds in step 2, we solve (20) as a
constrained minimization problem (function fmincon in Matlab) rather than
using the projection as in step 1. Constrained minimization problems are more
computationally demanding but we can afford it in this case since the size of
h is much smaller than the size of f.

The weighting constants α and βi depend on the level of noise. If noise
increases, α and β2 should increase, and β1 should decrease. One can use
parameter estimation techniques, such as cross-validation (Nguyen et al.,
2001) or expectation maximization (Molina et al., 2003), to determine the
correct weights. However, in our experiments we set the values manually
according to a visual assessment. If the iterative algorithm begins to am-
plify noise, we have underestimated the noise level. On the contrary, if the
algorithm begins to segment the image, we have overestimated the noise
level.

5. Experiments

This section consists of two parts. In the first one, a set of experiments on
synthetic data evaluate performance of the BSR algorithm with respect to the
SR factor and compare the reconstruction quality with other methods. The
second part demonstrates the applicability of the proposed method to real
data. Results are not evaluated with any measure of reconstruction quality,
such as mean-square errors or peak signal to noise ratios. Instead we print the
results and leave the comparison to a human eye as we believe that in this case
the visual assessment is the only reasonable method.

In all the experiments the sensor blur is fixed and set to a Gaussian function
of standard deviationσ = 0.34 (relative to the scale of LR images). One should
underline that the proposed BSR method is fairly robust to the choice of
the Gaussian variance, since it can compensate for insufficient variance by
automatically including the missing factor of Gaussian functions in the volatile
blurs.

Another potential pitfall that we have to take into consideration is a feasible
range of SR factors. Clearly, as the SR factor ε increases we need more LR
images and the stability of BSR decreases. In addition, rational SR factors
p/q, where p and q are incommensurable and large regardless of the effective
value of ε, also make the BSR algorithm unstable. It is the numerator p
that determines the internal SR factor used in the algorithm. Hence we limit
ourselves to ε between 1 and 2.5, such as 3/2, 5/3, 2, etc., which is sufficient
in most practical applications.
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Figure 2. Simulated data: (a) original 150 × 230 image; (b) six 7 × 7 volatile PSFs used to

blur the original image.

5.1. SIMULATED DATA

First, let us demonstrate the BSR performance with a simple experiment.
A 150 × 230 image in Figure 2a blurred with the six masks in Figure 2b
and downsampled with factor 2 generated six LR images. In this case,
registration is not necessary since the synthetic data are precisely aligned.
Using the LR images as an input, we estimated the original HR image
with the proposed BSR algorithm for ε = 1.25 and 1.75. In Figure 3 one
can compare the results printed in their original size. The HR image for
ε = 1.25 (Figure 3b) has improved significantly on the LR images due
to deconvolution, however some details on the column are still distorted.
For the SR factor 1.75, the reconstructed image in Figure 3c is almost
perfect.

Next we compare performance of the BSR algorithm with two methods:
interpolation technique and state-of-the-art SR method. The former technique
consists of the MBD method proposed in Šroubek and Flusser (2005) followed
by standard bilinear interpolation (BI) resampling. The MBD method first
removes volatile blurs and then BI of the deconvolved image achieves the
desired spatial resolution. The latter method, which we will call herein a
“standard SR algorithm”, is a MAP formulation of the SR problem proposed,
e.g., in Hardie et al. (1997), Segall et al. (2004). This method uses a MAP
framework for the joint estimation of image registration parameters (in our
case only translation) and the HR image, assuming only the sensor blur (U) and
no volatile blurs. For an image prior, we use edge preserving Huber Markov
Random Fields (Capel, 2004).
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(a) LR (b) e = 1.25 (c) e = 1.75

Figure 3. BSR of simulated data: (a) one of six LR images with the downsampling factor 2;

(b) BSR for ε = 1.25; (c) BSR for ε = 1.75.

In the case of BSR, Section 3 has shown that two distinct approaches ex-
ist for blur estimation. Either we use the naive approach in (8) that directly
utilizes the MBD formulation, or we apply the intrinsically SR approach sum-
marized in (14). Altogether we have thus four distinct methods for comparison:
standard SR approach, MBD with interpolation, BSR with naive blur regular-
ization and BSR with intrinsic blur regularization. Using the original image
and PSFs in Figure 2, six LR images (see one LR image in Figure 3a) were
generated as in the first experiment, only this time we added white Gaussian
noise with SNR = 50 dB.1

Estimated HR images and volatile blurs for all four methods are in
Figure 4. The standard SR approach in Figure 4a gives unsatisfactory re-
sults, since heavy blurring is present in the LR images and the method as-
sumes only the sensor blur and no volatile blurs. (For this reason, we do not
show volatile blurs in this case.) The MBD method in Figure 4b ignores the
decimation operator and thus the estimated volatile blurs are similar to LR
projections of the original blurs. Despite the fact that blind deconvolution in
the first stage performed well, many details are still missing since interpola-
tion in the second stage cannot properly recover high-frequency information.

1The signal-to-noise ratio is defined as SNR = 10 log(σ 2
f /σ

2
n ), where σ f and σn are the image

and noise standard deviations, respectively.
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Figure 4. Comparison of four different SR approaches (ε = 2): (a) standard SR method, (b)

MBD followed by bilinear interpolation, (c) naive BSR approach and (b) proposed intrinsic

BSR approach. Volatile blurs estimated by each method, except in the case of standard SR,

are in the top row. Due to blurring, the standard SR method in (a) failed to reconstruct the

HR image. MBD in (b) provided a good estimate of the blurs in the LR scale and performed

correct deconvolution but the HR image lacks many details as simple interpolation increased

resolution. Both BSR approaches in (c) and (d) gave close to perfect results. However in the

case of the naive approach, inaccurate blur regularization resulted in several artifacts in the HR

image.

Both the naive and the intrinsic BSR methods outperformed the previous
approaches and the intrinsic one provides a close-to-perfect HR image. Due
to the inaccurate regularization term in the naive approach, estimated blurs
contain tiny erroneous components that resulted in artifacts in the HR image
(Figure 4c). However, a more strict and accurate regularization term in the
case of the intrinsic BSR approach improved results, which one can see in
Figure 4d.

5.2. REAL DATA

The next two experiments demonstrate the true power of our fusion algo-
rithm. We used real photos acquired with two different acquisition devices:
webcamera and standard digital camera. The webcam was Logitech Quick-
Cam for Notebooks Pro with the maximum video resolution 640 × 480 and
the minimum shutter speed 1/10s. The digital camera was 5 Mpixel Olym-
pus C5050Z equipped with 3× optical zoom. In both experiments we used
cross-correlation to roughly register the LR images.
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(a) (b)

Figure 5. Reconstruction of images acquired with a webcam (ε = 2): (a) one of ten LR frames

extracted from a short video sequence captured with the webcam, zero-order interpolation; (b)

HR image and blurs estimated by the BSR algorithm. Note that many facial features, such as

glasses, are not apparent in the LR image, but are well reconstructed in the HR image.

In the first one we hold the webcam in hands and captured a short video
sequence of a human face. Then we extracted 10 consecutive frames and
considered a small section of size 40 × 50. One frame with zero-order in-
terpolation is in Figure 5a. The other frames look similar. The long shutter
speed (1/10s) together with the inevitable motion of hands introduced blur-
ring into the images. In this experiment, the SR factor was set to 2. The
proposed BSR algorithm removed blurring and performed SR correctly as
one can see in Figure 5b. Note that many facial features (eyes, glasses,
mouth) indistinguishable in the original LR image became visible in the
HR image.

The second experiment demonstrates a task of license plate recognition.
With the digital camera we took eight photos, registered them with cross-
correlation and cropped each to a 100 × 50 rectangle. All eight cuttings
printed in their original size (no interpolation), including one image enlarged
with zero-order interpolation, are in Figure 6a. Similar to the previous exper-
iment, the camera was held in hands, and due to the longer shutter speed, the
LR images exhibit subtle blurring. We set the SR factor to 5/3. In order to
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(a)

(b) (c)

Figure 6. Reconstruction of images acquired with a digital camera (ε = 5/3): (a) eight LR

images, one enlarged with zero-order interpolation; (b) HR image estimated by the BSR algo-

rithm; (c) image acquired with optical zoom 1.7×. The BSR algorithm achieved reconstruction

comparable to the image with optical zoom.

better assess the obtained results we took one additional image with optical
zoom 1.7× (close to the desired SR factor 5/3). This image served as the
ground truth; see Figure 6c. The proposed BSR method returned a well re-
constructed HR image (Figure 6b), which is comparable to the ground truth
acquired with the optical zoom.

6. Conclusions

In this chapter we proposed a method for improving visual quality and spatial
resolution of digital images acquired by low-resolution sensors. The method
is based on fusing several images (channels) of the same scene. It consists of
three major steps – image registration, blind deconvolution and superresolu-
tion enhancement. We reviewed all three steps and we paid special attention
to superresolution fusion. We proposed a unifying system that simultaneously
estimates image blurs and recovers the original undistorted image, all in high
resolution, without any prior knowledge of the blurs and original image. We
accomplished this by formulating the problem as constrained least squares
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energy minimization with appropriate regularization terms, which guarantees
a close-to-perfect solution.

Showing the good performance of the method on real data, we demon-
strated its capability to improve the image quality significantly and, conse-
quently, to make the task of object detection and identification much easier for
human observers as well as for automatic systems. We envisage the application
of the proposed method in security and surveillance systems.
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